
1 

Report on approaches to analyse multiple stressor 

data in the context of longitudinal modelling 
Work package 7 - Task 7.3 - Deliverable 7.3 

Authors:  

Charline Warembourg, Martine Vrijheid, Xavier Basagaña

Organisation Name of Lead Contractor of this Deliverable: UNITO 

Version 1.0 

Delivery date: 30 June 2021 (Month 54) 

Dissemination level: 

Public  

Ref. Ares(2021)4538810 - 13/07/2021



2 

 

Table of contents 

1. Context ............................................................................................................................ 3 

2. Methods .......................................................................................................................... 3 

Data simulation ....................................................................................................................... 3 

Exposome simulation .......................................................................................................... 3 

Outcome simulation ............................................................................................................ 4 

Statistical Methods to Estimate the Exposome-Health Association ...................................... 5 

3. Results ............................................................................................................................. 7 

4. Conclusion ....................................................................................................................... 8 

5. References ....................................................................................................................... 9 

 

 



3 

1. Context

The exposome encompasses all the environmental (i.e., non-genetic) factors that an 

individual experience from conception onwards. The exposome concept has emerged 

quite recently and aims at considering all the environmental stressors simultaneously as 

opposed to the one-by-one approach classically used in epidemiological research. The 

exposome approach leads to some statistical challenges due to the high number of 

exposures that need to be considered, which are sometimes highly correlated. The first 

large epidemiological exposome studies have been published recently, and most of them 

explore the effects of the exposome at a single time point. In parallel, some 

methodological papers have reported recommendations on how to analyze exposome 

data by looking at issues such as false positive or negative associations, statistical power, 

or how to deal with highly correlated data (Agier et al., 2016; Santos et al., 2020). 

However, few studies have tried to characterize the longitudinal relationship between 

repeated measures of the exposome and a health outcome, and there is no clear 

guidance on what methods to use and their performances. Having repeated 

measurements of the exposome further increases the dimensionality problem and may 

also aggravate the problems associated with highly correlated variables, as a variable 

measured at different time points is expected to have some degree of correlation, 

although this can vary according by the type of exposure. 

Here, we conduct a simulation study is to compare the performance of different statistical 

approaches to assess exposome-health associations in the context of multiple and 

repeated exposure variables. We expect that these results start shedding some light on 

what are the most useful approaches in different scenarios dealing with repeated 

exposome data and that they can inform future longitudinal exposome analyses.  

2. Methods

Data simulation 

Exposome simulation 

We simulated 100 independent datasets, each of them being composed of 500 exposure 

variables (100 exposures multiplied by 5 time points). The exposure matrix was obtained 

by summing to components: 1) a subject random effect, that induces correlation 

between repeated measures from the same subject; and 2) a residual term, that induces 

correlation between exposures. To generate the random effects, we sampled from a 

mean zero normal distribution, with a variance according to three values for the 

intraclass correlation coefficient (ICC): low (0.1), medium (0.5), and high (0.9). Each 

ICC was used with the same probability, so that simulated dataset approximately had the 

same number of variables with each ICC. Variables with an ICC of 0.9 are variables that 

are expected to remain similar over time (e.g., exposures with long half-life), while those 

with an ICC of 0.1 are expected to vary a lot over time (e.g., compounds with short half-

life). The residual component for each time point was generated from a multivariate  

normal distribution with mean zero and covariance matrix equal to a real correlation 

matrix from the HELIX project (postnatal exposome, see Figure 1).  
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Figure 1. Real correlation matrix used to simulate the data at baseline  

(time point i=1; Postnatal exposome - HELIX project) 

 

 

Outcome simulation 

The health outcome Y was simulated by choosing a reduced subset of exposures that 

were assumed to be the only ones that were associated with the outcome (hereafter true 

exposures), according to two scenarios:  

- Scenario 1, where all the 5 time points of each of the true exposures are truly 

associated with Y 

- Scenario 2 where only a single time point of each of the true exposures is truly 

associated with Y 

For each scenario, Y was simulated with k=3, 5, 10, and 25 true exposures. For 

scenario 1, it means that the total number of terms in the data-generating model (apart 

from the intercept) was 15, 25, 50, and 125 variables (i.e., k multiplied by 5 time 

points). For scenario 2, this means that the data-generating model includes k terms 

(apart from the intercept). Let X1, … X100, and let l = (l1,…,lk) be a set of indices that 

indicate which are the k true exposures. The mean of Y was calculated as m = ∑ 𝛽𝑗𝑋𝑙𝑗
𝑘
𝑗=1 . 

Then, the response variable was generated from a normal distribution with mean m and 

a variance that resulted in an R2 of the model of 5%.    
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Statistical Methods to Estimate the Exposome-Health Association 

The following methods were applied to the raw data (100 exposures measured at 5 

different time points = 500 variables):  

1. Exposome-wide association study (ExWAS). ExWAS consists of fitting as many 

regression models as there are exposure variables in order to evaluate the 

association between each exposure variable and Y, independently of the other 

(Patel et al., 2010). The statistical significance is based on the two-sided p-value 

after applying a correction for multiple testing. For the present study, 500 linear 

regression models were performed to assess the association between each 

exposure variable and Y, independently of the other exposure variables and 

ignoring the dependency between time points. The results are reported with no 

correction for multiple testing and with correction for multiple testing using the 

Bonferroni, the Benjamini-Hochberg, and the Benjamini-Yekutieli correction. 

2. ExWAS-multiple linear regression (ExWAS-MLR). ExWAS-MLR is an extension of 

the ExWAS where the statistically significant variables from the ExWAS are 

introduced simultaneously in a single multi-exposure regression model. Each 

exposure variable is considered statistically significant if the two-sided p-value 

obtained in the multi-exposure regression model is below 5%. The candidate 

variables to be introduced into the multi-exposure model were selected according 

the ExWAS results, with and without correction for multiple testing.  

3. Elastic Net (ENET). ENET is a penalized regression method that performs both 

regularization and variable selection (Zou & Hastie, 2005). It combines the L1 

penalty from LASSO which shrink the coefficient of the uninformative variable to 

0, and the L2 penalty from RIDGE which accommodates correlated variables and 

ensures numerical stability. The tuning parameters were determined in two 

different ways: 1) by minimizing the prediction root mean squared error (RMSE) 

using 10-fold cross-validation (ENET.min), and 2) by defining the optimal 

calibration parameters (in order to prevent over-fitting) as those providing the 

sparsest model among those yielding an RMSE within 1 standard error of the 

minimum RMSE (ENET.opt).  

4. Sparse Partial Least Squares regression (sPLS). sPLS performs both variable 

selection and dimension reduction simultaneously (Chun & Keleş, 2010). sPLS is 

an extension of the partial least squares regression – a supervised dimension 

reduction technique that builds latent variables as linear combinations of the 

original set of variables – which additionally imposes sparsity using a L1 penalty in 

the estimation of the linear combination coefficients. The tuning parameter and 

the number of components to be included in the regression model were calibrated 

by minimizing the RMSE using 5-fold cross-validation.  

5. Max-Min Parent Children algorithm (MMPC). The MMPC algorithm perform variable 

selection. MMPC is similar to a forward selection except that, at every step (when 

searching for the next best variable) it does not use all previously selected 

variables, but subsets of them and the non-significant variables are removed for 

further consideration (Tsagris & Tsamardinos, 2019). The number of variables 

included in the subsets of previously selected variables was set to 3 (default 

value). Statistical significance is based on the two-sided p-value below 5%.  

6. Deletion-substitution-addition algorithm (DSA). DSA is an iterative regression 

model search algorithm performing variable selection (Sinisi & van der Laan, 
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2004). It searches for the best model starting with the intercept model and 

identifying an optimal model for each model size. At each iteration, the following 

three steps are allowed: a) removing a term, b) replacing one term with another, 

and c) adding a term to the current model. The final model is selected by 

minimizing the value of the RMSE using 5-fold cross-validated data. For this 

simulation study, we did not allow polynomial nor interaction terms, and 

considered models of size up to 25 variables. 

7. Constrained Distributed Lag Nonlinear Model (DLNM). Distributed lag models are 

regression models that assess how an exposure measured at different time points 

affects the outcome. Constrained distributed lag models allow putting constraints 

to the regression coefficients at each time point in order to improve in efficiency 

and to avoid collinearity problems. For example, it is common to constrain 

regression coefficients to vary smoothly over time, thus assuming that the effects 

of exposure at two periods that are close in time will be more similar than the 

effects for two exposure periods that are further apart (Gasparrini et al., 2010). 

DLNMs describe the bi-dimensional dose-lag-response associations, potentially 

varying non-linearly in the dimensions of predictor intensity and lag. To do so, we 

build a cross-basis matrix (one basis for the predictors and one basis for the lags) 

for each exposure and introduced them in 100 independent linear regression 

models. To build the basis for the predictors, we assumed a linear effect of the 

exposures on Y. Regarding the shape in the lag space, we assumed it follows a 

quadratic B-spline, with two equally-spaced knots. To evaluate the statistical 

significance of the exposure-outcome association, we first evaluated the 

significance of the entire cross-basis, applying or not a correction for multiple 

testing. Then, among the significant cross-bases (with or without p-value 

correction), we evaluated if a particular lag was statistically significant if the 

estimated effect for that lag had a confidence interval that excluded 0. 

8. Penalized distributed Lag (Non-)Linear Models (DLNMpen). This method is an 

extension of the DLM/DLNM framework to penalized splines within generalized 

additive models (gam) (Gasparrini et al., 2017). Here, the specification of the 

dlnm was the same than in the previous method (DLNM), except that we placed 

knots at all time points, forced the lag structure to follow a cubic regression spline 

and introduced a penalty term that regulated the degree of smoothing. 

Significance was assessed as in DLNM. 

For methods 1, 2, 7 and 8, results are reported with no correction for multiple testing 

and with correction for multiple testing using the Bonferroni, the Benjamini-Hochberg 

(BH), and the Benjamini-Yekutieli (BY) correction.  

 

The dependency between time points was ignored when applying methods 1 to 6 and all 

variables measured at different time points were considered independently; i.e., only 

methods 7 and 8 considered the longitudinal character of the exposure variables measure 

from time i=1 to 5. 

 

In addition, we implemented 2-step approaches: the first step aims to summarize the 

exposure levels measured at different time points into a single measure (moving from 

500 to 100 variables) and to apply an ExWAS analysis on these summarized exposures. 

At the second step, we applied methods 1 to 6 on the subset of (raw) exposures for 
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which the summarized exposures were significant at 0.05 alpha level in the ExWAS 

performed at step 1. Step 1 was performed in 2 different ways: 1) by calculating the 

averaged level of exposure across time points and 2) by building exposure trajectories 

using latent class mixed model (LCMM).  

Statistical Performance Assessment 

For all methods, we calculated the sensitivity and the false discovery rate in two different 

ways: 1) to evaluate the performance to identify the true exposure at the true time point 

(denominator = 500 variables), and 2) to evaluate the performance to identify the true 

exposure whatever the time point (denominator=100 variables). 

We also compared the performance of the methods to identify the true exposure at the 

true time point according to the intraclass correlation coefficient of the exposures across 

time points.  

3. Results 

 

Scenario 1. All time points are truly associated with Y 

Performance to detect the true exposure whatever the true time point (Table 1): All 

methods have a good sensitivity when the number of true predictors is low (k=3: min 

sensitivity = 74% for ENET.opt applied on raw data), but show varying level of FDR. For 

k=3 and k=5, the methods that show a sensitivity >70% and a FDR <20% include DSA, 

and ExWAS, DLNM, and penalized DLNM (with p-value correction) applied on the raw 

data, and some of the 2-step approaches including the ExWAS (with p-value correction) 

and ENET applied on the exposure trajectories, and the ExWAS (with a Bonferroni 

correction) applied on the averaged exposure levels. For k=10 and k=25, the sensitivity 

decreases drastically for all methods (<50% for several of them); the DSA performed on 

the averaged data shows the best performance with a sensitivity/FDR of 85%/31% when 

k=10 and 52%/22% when k=25. 

Performance to detect the true exposure at the true time point (Table 2): None of the 

tested methods outperforms the others to detect the true exposure at the true time 

point. In overall, low FDR are observed for several methods but few of them have a high 

sensitivity. For k=3 and k=5, only 2 methods, both following a 2-step approach, show a 

sensitivity >70% and a FDR<20%, that are the ExWAS (with a BY correction) applied on 

the averaged exposure levels and the ExWAS (with a BH correction) applied on exposure 

trajectories. ExWAS (with any p-value correction) applied on raw data also shows 

reasonable performance but with a lower sensitivity. For k=10 and k=25, the sPLS 

performed on the averaged data shows the best performance with a sensitivity/FDR of 

87%/37% when k=10, and 62%/27% when k=25. 

Scenario 2. A single time point is truly associated with Y 

Performance to detect the true exposure whatever the true time point (Table 3): When 

only a single time point is truly associated with Y, none of the tested methods perform 
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well to detect the true exposure when k=5, 10, or 25, i.e., none of the methods reach a 

sensitivity >60% together with a FDR <30%. When k=3, the DSA applied on raw data is 

the only method which has a sensitivity >80% and a FDR<10%. Other methods including 

penalized DLNM (with a BH correction), ExWAS and ExWAS-MLM (with a Bonferroni or a 

BH correction) and sPLS applied on raw data, and also the ExWAS and ExWAS-MLM (with 

a Bonferroni correction) applied on the averaged exposure levels show a sensitivity 

>70% and a FDR <20%. 

Performance to detect the true exposure at the true time point (Table 4): Similarly, none 

of the tested methods perform well when k=5, 10, or 25. When k=3, DSA, sPLS, and 

ExWAS-MLM (with a Bonferroni or a BH correction) applied on raw data, and ExWAS-MLM 

(with a Bonferroni correction) applied on averaged exposure levels show a sensitivity 

>70% and a FDR<20%, followed by  ExWAS (with Bonferroni or By correction) applied 

on raw data and ExWAS-MLM (with a BY correction) with a sensitivity >60% and a FDR 

<30%. 

Comparison of the performances by ICC between time points 

Scenario 1. When the ICC is high (>0.6), ExWAS (with any p-value correction) applied 

on raw data performed well for k=3 and 5 (sensitivity>80% and FDR<10%). sPLS 

applied on raw data also shows good performance (sensitivity>70% and FDR<20%) up 

to k=10. Similar performances are observed when these methods are applied on 

averaged exposure levels with a sensitivity >70% and FDR <20% for ExWAS (with BY 

correction) up to k=10 and sPLS up to k=25. ExWAS (with p-value correction) applied on 

exposure trajectories also shows a sensitivity >70 and a FDR<20%, or better, up to 

k=10. 

Scenario 2. The results observed with different ICC are similar to the main results; none 

of the methods perform well for k=5, 10 and 25. In overall, the methods seem to 

perform slightly better for k=3 when the ICC between time points is low (<0.3) to 

moderate (>0.3 to <0.6).  

4. Conclusion 

Some methods, such as ExWAS and DSA applied on raw data, and ExWAS applied on 

averaged exposure levels show good performance to identify the exposures that are truly 

associated with Y in both scenarios. However, these methods perform worse to identify 

the true window of exposure and when the number of true exposures is high (k=10 and 

k=25). If we are interested in the detection of the true window of exposure and we 

assumed a low number of true exposures (k=3 or 5), ExWAS applied on averaged 

exposure levels or on exposure trajectories show the best performance under scenario 1 

(all time points truly associated with Y), while DSA, sPLS, and ExWAS-MLM applied on 

raw data and ExWAS-MLM applied on averaged exposure levels show the best 

performance under scenario 2 (only a single time point is truly associated with Y). For 

the scenario 1, the methods seem to perform better when the ICC between time points is 

high, including when k is high (k=10 and 25).  
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This simulation study shows that none of the tested methods provided good enough 

performance to study association between repeated exposome data and health outcome 

and it is difficult to provide a clear strategy that would fits for all potential scenarios. 

These results call for the development of new statistical methods or approaches that are 

able to address both the issue of multiple (and correlated) variables and of repeated 

exposome data with an improved performance.  
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Scenario 1 (all time points are associated with Y) 

 

Table 1. Performance to identify the true exposures whatever the true time point(s) – 

Scenario 1 

< Sensitivity    FDR    

N true predictors (x5) 3 5 10 25 3 5 10 25 

Raw data         

ExWAS.none 100 (0) 99 (4.4) 92.5 (8.1) 76.5 (7.9) 85.8 (3.1) 78.6 (4.4) 65.5 (6.2) 45.3 (6.8) 

Exwas.bon 86.7 (18.3) 69.4 (17.4) 35.7 (12.4) 8 (5.1) 3.1 (9.8) 1.6 (6) 2.4 (7.9) 2.9 (12.6) 

ExWAS.bh 95 (12) 85.4 (15) 61.7 (17.4) 24.1 (14.4) 17.5 (18.7) 18 (15.5) 12.6 (12.4) 9.4 (9.8) 

ExWAS.by 88.7 (17.9) 72.6 (18.8) 38.7 (15.5) 5.7 (6) 3.9 (10.5) 3.4 (8.3) 2.9 (7.5) 0.8 (4.1) 

ExWAS.MLM.none 74.7 (24.7) 58.4 (23.4) 35.9 (16.8) 23.5 (8.6) 72.5 (12.2) 67.2 (13.1) 58.8 (16.8) 43.9 (15.4) 

Exwas.MLM.bon 74.3 (24.6) 49.8 (21) 24.2 (14.5) 6.5 (4.4) 2.6 (9.1) 1.9 (7.1) 4 (14.2) 3.2 (13.3) 

ExWAS.MLM.bh 80 (25.1) 59.6 (22.4) 35.6 (16.9) 15.6 (10.1) 16.3 (20.3) 21.7 (19.4) 17.4 (20) 12 (15.8) 

ExWAS.MLM.by 76.3 (23.4) 52.4 (23.9) 25.9 (15.7) 4.2 (4.7) 2.9 (9.6) 3.8 (10.7) 3.9 (10.6) 1.7 (10.7) 

ENET.min 100 (0) 98.6 (5.1) 92.5 (10.5) 80.6 (13.9) 78 (14.9) 75 (12.3) 66.7 (11.8) 51.8 (10.1) 

ENET.opt 74 (27.5) 64 (26.8) 43.4 (29) 18 (21.3) 3.8 (12.9) 5.4 (13.5) 6.4 (11) 7.6 (11.9) 

sPLS 95 (12) 89 (13.7) 73.8 (21.7) 65 (35.3) 25.1 (27.4) 30.2 (24.4) 32.7 (24.9) 41.3 (27.6) 

MMPC 100 (0) 95.6 (8.8) 82.1 (12.3) 51.9 (8.5) 64.4 (8.2) 53.1 (9.7) 37.6 (10) 25.9 (8.3) 

DSA 87.7 (18.1) 74.4 (22.4) 48.9 (21.5) 11.1 (13.1) 8.5 (16.4) 8.4 (13.6) 6.5 (10.1) 5.3 (10.1) 

Averaged data         

ExWAS.none 100 (0) 98.6 (5.1) 88.3 (10.7) 61 (8.9) 62.5 (11) 50 (11.3) 36.7 (10.4) 26.7 (8.3) 

Exwas.bon 95.7 (11.3) 82.4 (14.3) 51.9 (13.3) 15.9 (7.1) 10.9 (15.3) 8.9 (12.6) 4.2 (8) 5.2 (13.3) 

ExWAS.bh 99.7 (3.3) 98 (6) 85.1 (11.5) 53 (11.5) 57 (10.8) 43.9 (13.4) 32.7 (10.4) 23.2 (9.6) 

ExWAS.by 97.7 (8.5) 89.8 (12.2) 66.1 (16.4) 21.6 (12.6) 27.7 (19) 22.8 (14) 11.3 (11.3) 6.9 (9.3) 

ExWAS.MLM.none 79.3 (25.9) 60 (21.5) 38.8 (18.9) 19.1 (8.2) 40.4 (20.7) 32.3 (20) 29.1 (22.4) 24.9 (17.6) 

Exwas.MLM.bon 80.3 (24.7) 58.2 (23.1) 34.2 (16.1) 12.3 (7) 10 (17.3) 10.2 (15.7) 6.1 (14.7) 7.6 (21.3) 

ExWAS.MLM.bh 78.7 (23.9) 62.8 (22.7) 41.3 (18.5) 21.8 (8.7) 43.7 (18.6) 34.9 (21.3) 29.4 (20.7) 26.5 (17.3) 

ExWAS.MLM.by 83 (23.5) 62.2 (22.2) 37.8 (17.5) 14.4 (9.1) 24.7 (19.3) 26.2 (19.8) 16.5 (21.2) 8.8 (15.7) 

ENET.min 100 (0) 99.2 (3.9) 89.8 (10.7) 62.4 (8.7) 63.6 (10.7) 51.4 (10.9) 37.7 (10.1) 27.4 (8.3) 

ENET.opt 93.3 (13.4) 89.4 (15.9) 76.6 (19.9) 47.8 (18.8) 25.7 (26.8) 26 (21.7) 22.5 (15) 20 (11) 

sPLS 100 (0) 99.2 (3.9) 89.8 (10.7) 62.4 (8.7) 63.3 (11.9) 51.3 (11.1) 37.8 (10.2) 27.6 (8.3) 

MMPC 100 (0) 96.2 (7.9) 81.8 (12) 48.8 (8.6) 48 (13.7) 36 (13.9) 24.4 (10.8) 19.4 (9) 

DSA 99.3 (6.7) 96.8 (8.9) 84.9 (16.5) 52.4 (17.9) 54.1 (20.6) 42.7 (19.7) 30.7 (12.9) 21.9 (10.6) 

Trajectories         

ExWAS.none 99.3 (4.7) 91.2 (11.8) 67.5 (15.9) 32.2 (8.8) 45.1 (14) 34.8 (15.6) 25.7 (12.3) 21.9 (11.6) 

Exwas.bon 95.3 (11.6) 80.6 (15.9) 49.6 (13) 15.2 (6.9) 8.3 (13) 6 (10.6) 2.2 (6) 6.3 (11.8) 

ExWAS.bh 99.3 (4.7) 90.8 (12.2) 66.3 (15.7) 30 (9.7) 35.7 (15.9) 27 (14.6) 20.7 (11.3) 16.9 (11.8) 

ExWAS.by 97.7 (8.5) 86.6 (13.9) 58 (15.9) 19.6 (9.8) 18.2 (17.6) 13.8 (14.4) 6.9 (9.2) 7.4 (10.7) 

ExWAS.MLM.none 81.7 (22.9) 57 (21.2) 33.3 (16.9) 11.9 (6.4) 27 (19.8) 25 (23.5) 20.1 (23.8) 22.9 (22.4) 

Exwas.MLM.bon 80.3 (24.2) 56.6 (24.1) 31 (16) 11 (6.6) 6.5 (12.6) 7.4 (15.7) 3 (8.5) 8.1 (17.5) 

ExWAS.MLM.bh 81.7 (23.4) 57.2 (23.3) 33.3 (16) 12.2 (6.5) 24.3 (20.4) 27.4 (24.6) 20.5 (21.3) 23.3 (20.5) 

ExWAS.MLM.by 82.7 (23.4) 58.4 (22.1) 33.1 (15.9) 11.7 (7) 14 (16.3) 16.6 (21.3) 7.9 (13.3) 10.1 (17.4) 

ENET.min 99.3 (4.7) 91.4 (11.8) 68.1 (16) 33.3 (8.8) 58.9 (12.7) 50.2 (12.6) 38.4 (11.4) 31.5 (11.4) 

ENET.opt 90 (18.6) 81.4 (19.7) 53.6 (26.2) 18.9 (15.1) 13 (19) 12.3 (15.7) 8.5 (10.7) 8.8 (11.8) 

sPLS 99.3 (4.7) 91.4 (11.8) 67.7 (16.5) 33.3 (8.8) 49.1 (22.3) 45.7 (17.4) 37.3 (13.1) 31.6 (12.3) 

MMPC 99.3 (4.7) 90.4 (11.9) 65.8 (15.4) 29.7 (8.2) 31.1 (15) 24.7 (14.4) 16.3 (11.5) 16.8 (11.5) 

DSA 98.3 (7.3) 86.8 (14.3) 6.3 (8.1) 27.7 (12.3) 42.6 (21.4) 30.1 (22.1) 12 (26.9) 17.4 (14) 
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DLNM         

EWAS.none 100 (0) 96 (8) 77.5 (13.1) 43.8 (9.7) 58.5 (16.7) 50.5 (14.1) 35.2 (14.1) 29.2 (11.7) 

EWAS.bonf 93.7 (13.1) 71.2 (18.1) 33.6 (13.4) 5.2 (3.8) 2.5 (8.1) 0.8 (4.1) 1.2 (7.1) 4 (12.7) 

EWAS.bh 96.3 (10.5) 81 (16.2) 43.8 (14.8) 11.2 (8.9) 7.4 (12.6) 6.8 (12.5) 5.2 (11.1) 6.6 (13) 

EWAS.by 92.3 (14.1) 69.4 (19.6) 30.2 (16.2) 2.9 (3.6) 2.1 (7.5) 0.8 (4.1) 0.7 (5.2) 1.2 (7.4) 

Penalized DLNM         

EWAS.none 100 (0) 98 (6) 84.9 (13.1) 53.9 (10.3) 68.8 (10.6) 59.7 (12) 43.8 (12) 33.2 (9.6) 

EWAS.bonf 99.3 (4.7) 89.4 (12.2) 61.1 (12.9) 23.7 (7.9) 17.1 (18.8) 16.3 (15.6) 12.5 (12.3) 12.1 (13.2) 

EWAS.bh 97.7 (8.5) 86.6 (15.1) 57.6 (16.2) 19.6 (11.1) 10.1 (14.9) 10.7 (14.8) 9.6 (12.3) 9.7 (12.8) 

EWAS.by 94.7 (12.3) 77.8 (17.7) 35.5 (16) 6.5 (6.1) 1.7 (7) 3.1 (9.2) 2 (7.2) 2.8 (9.9) 
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Figure 2. Performance to identify the true exposures whatever the true time point(s) – Scenario 1 
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Table 2. Performance to identify the true exposures at the true time point(s) – Scenario 1 

 
Sensitivity    FDR    

N true predictors (x5) 3 5 10 25 3 5 10 25 

Raw data         

ExWAS.none 94.9 (6.7) 86.9 (9.3) 69.2 (9.5) 43.1 (7) 64.4 (6.7) 53.8 (7.5) 42.4 (7.6) 30.2 (6.9) 

Exwas.bon 66.9 (17.4) 47.4 (13.8) 18.1 (6.8) 2.6 (2) 1.2 (3.7) 0.8 (3) 1.1 (3.7) 2.3 (11.2) 

ExWAS.bh 78.9 (14.6) 65.3 (14.6) 37.1 (11.4) 10.3 (6.9) 7 (8.8) 7 (7.6) 5.6 (6.1) 5.5 (6.3) 

ExWAS.by 68.6 (17.9) 51.6 (15.7) 20.5 (9.3) 2.1 (2.5) 1.5 (4.2) 1.5 (3.8) 1.2 (3.3) 0.4 (2.2) 

ExWAS.MLM.none 22.9 (11.5) 14.3 (6.5) 8 (4) 4.9 (1.9) 65.4 (15.3) 63.8 (14.1) 57.2 (17.5) 43.2 (15.7) 

Exwas.MLM.bon 22.6 (11) 12.3 (6) 5.2 (3.1) 1.4 (0.9) 2.1 (7.9) 1.8 (6.8) 4 (14.1) 3.1 (13.2) 

ExWAS.MLM.bh 25.8 (12.7) 15.6 (7.5) 7.9 (4.1) 3.3 (2.1) 12.7 (17.3) 18.8 (18.1) 16.6 (19.8) 12 (16) 

ExWAS.MLM.by 22.9 (10.8) 13.2 (7.2) 5.5 (3.4) 0.9 (1) 2.5 (8.5) 3.2 (9.7) 3.8 (10.5) 1.6 (10.6) 

ENET.min 70.2 (11.9) 59.2 (11.2) 42.8 (9.1) 29.1 (7.5) 57.6 (17.1) 55.8 (14) 51.9 (12.1) 43.1 (9.7) 

ENET.opt 34.6 (16.6) 24.2 (13.7) 13.6 (9.9) 5 (6.4) 2.3 (7.8) 3.4 (9.8) 4.6 (8.3) 6.1 (9.7) 

sPLS 71.8 (23.5) 61.4 (23.5) 47 (23.4) 45.5 (32.3) 13.2 (16.8) 15.5 (15.5) 18.7 (16.3) 32 (24.6) 

MMPC 36.3 (8.7) 25.6 (5.4) 17.7 (3.2) 10.6 (1.8) 51.2 (11.3) 46.7 (10.7) 36.1 (10.6) 25.8 (8.4) 

DSA 20.4 (6.9) 15.2 (5) 9.9 (4.5) 2.2 (2.6) 7.2 (14.3) 8.1 (13.3) 6.5 (10.1) 5.4 (10.3) 

Averaged data         

ExWAS.none 94.9 (6.7) 86.8 (9.3) 68.2 (10.1) 39.5 (7.5) 43.7 (12.3) 32.8 (10.9) 24.8 (8.9) 19.4 (7.3) 

Exwas.bon 78.9 (13.7) 61 (12.5) 28.7 (7.9) 5.8 (2.9) 4.4 (7.1) 3.6 (5.7) 2.2 (4.7) 3.6 (11.5) 

ExWAS.bh 92.5 (8.7) 83.3 (10.2) 61.9 (10.7) 29.4 (9.8) 33.7 (12) 25.3 (11) 18.8 (7.7) 15 (7.5) 

ExWAS.by 84.7 (12.8) 70.2 (13.6) 40.6 (11) 9 (5.9) 11.4 (10.2) 9.7 (7.5) 5.3 (5.9) 4.3 (6.3) 

ExWAS.MLM.none 25.4 (13) 15.3 (6.9) 8.8 (4.7) 4.1 (1.8) 33.8 (20.5) 29.8 (19.9) 27.8 (22.6) 24.5 (17.4) 

Exwas.MLM.bon 26.2 (12.5) 15.2 (7.6) 7.5 (3.7) 2.6 (1.5) 8.2 (15.5) 8.4 (13.6) 5.7 (14.2) 7.7 (21.4) 

ExWAS.MLM.bh 25.4 (12.3) 16 (7.1) 9.3 (4.4) 4.6 (1.9) 36 (19) 31.6 (20.7) 28 (20.5) 25.9 (17.2) 

ExWAS.MLM.by 27.3 (13.1) 16.1 (7.7) 8.2 (4) 3 (1.9) 19.3 (17) 23.3 (19.3) 15.9 (21) 9 (16) 

ENET.min 82.6 (9.7) 75.5 (10.1) 57.6 (9.5) 33.1 (6.1) 52.1 (10.5) 41.8 (10.8) 31.7 (9.4) 25.4 (8) 

ENET.opt 53.4 (16.6) 43.7 (13.2) 29.9 (11.3) 15.9 (7.5) 14.9 (17) 15.8 (14.7) 15.7 (11.2) 16.2 (9.3) 

sPLS 97.1 (10.1) 95 (9.7) 86.9 (13) 62.2 (8.6) 59 (14.5) 47.4 (12.5) 36.8 (10.4) 27.5 (8.3) 

MMPC 36.7 (8.5) 26.3 (5.5) 17.7 (3.2) 9.9 (1.8) 35.3 (13) 30.1 (13.3) 23.2 (10.6) 19.3 (8.9) 

DSA 50.9 (19.1) 46.2 (21.6) 29.2 (16) 12.3 (4.8) 42.9 (17.5) 36.6 (18.2) 28 (12.6) 21.3 (10.5) 

Trajectories         

EWAS.none 94.5 (7.9) 83.6 (12.5) 57.1 (13.3) 23.7 (7.1) 27.3 (12.3) 19.3 (11.7) 14.7 (8.8) 13.9 (9.2) 

EWAS.bon 79.1 (13.8) 61 (13.3) 29.1 (7.6) 6.4 (3.2) 3.4 (6.3) 2.4 (4.8) 1.2 (3.5) 4 (8.4) 

EWAS.bh 91.3 (9.9) 80.4 (12.3) 53.1 (12.5) 19.7 (7.6) 18.7 (12.3) 13 (9.9) 10.7 (7.8) 10.1 (8.7) 

EWAS.by 85.1 (12.5) 69.2 (13.9) 39 (10.9) 9.8 (5.7) 7.5 (8.9) 5.7 (7.1) 3.3 (5.1) 4.4 (7) 

EWAS_LM.none 26.5 (11.2) 15.1 (7.2) 7.7 (4.3) 2.6 (1.4) 21.1 (16.8) 22.7 (23) 19.1 (23.6) 22.6 (22.6) 

EWAS_LM.bon 25.9 (12.6) 14.8 (7.5) 6.8 (3.6) 2.3 (1.4) 5.1 (10.5) 6.4 (14.5) 2.9 (8.1) 8 (17.3) 

EWAS_LM.bh 26.1 (11.4) 15.4 (7.9) 7.6 (3.8) 2.7 (1.4) 19.2 (17.1) 24.6 (24.2) 19.4 (21) 22.3 (20.1) 

EWAS_LM.by 27.3 (13) 15.4 (7.6) 7.4 (3.8) 2.5 (1.5) 10.4 (13.1) 14.7 (19.9) 7.5 (12.8) 10 (17.6) 

ENET.min 81.5 (10.9) 69.8 (12.2) 44.4 (11.6) 18.4 (5.7) 43.2 (13.5) 36.8 (12.6) 29 (10.7) 26.1 (10.9) 

ENET.opt 49.6 (18.5) 38 (14.9) 19.9 (12) 6 (5.5) 6.7 (10.5) 6.9 (9.2) 5.6 (7.6) 7.1 (10.1) 

sPLS 91.9 (15.9) 86 (15.9) 63.6 (18.8) 31.5 (9.4) 41.5 (22.7) 38.6 (19.1) 32.4 (14) 28.4 (13.2) 

MMPC 37.1 (8.7) 25.3 (5.7) 14.5 (3.9) 6.2 (1.8) 21.5 (12) 20 (12.9) 15.3 (11.2) 16.6 (11.6) 

DSA 49.3 (20.8) 33.8 (16.7) 1.4 (1.7) 6.8 (3.7) 31.9 (17.4) 25.4 (19.6) 11.6 (26.4) 17.2 (14.1) 

DLNM         

EWAS.none 38.7 (13.7) 24.4 (10.1) 14.9 (6.4) 7.8 (3) 52.7 (19.2) 54.8 (18.8) 45 (18.6) 40 (17.9) 

EWAS.bonf 37 (14.6) 19.4 (10.8) 8.4 (5.6) 1.4 (1.3) 2.3 (7.9) 1.2 (6.5) 1.3 (7.7) 5.4 (18.3) 
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EWAS.bh 37.7 (14.3) 21.5 (11) 10.3 (6) 2.7 (2.5) 7.1 (12.9) 9.2 (19) 6.1 (13.1) 9.4 (19.3) 

EWAS.by 36.5 (14.9) 18.9 (10.5) 7.6 (6) 0.8 (1.2) 2 (7.2) 1.2 (6.5) 0.8 (6) 1.6 (11.2) 

Penalized DLNM         

EWAS.none 64.3 (13) 50.4 (11.3) 35.5 (9) 19.4 (5.3) 56.5 (14.3) 51.8 (14.9) 40.7 (13.5) 34.4 (11.8) 

EWAS.bonf 61.7 (14.7) 42 (14.1) 18.2 (8) 4.3 (3) 2.6 (8.8) 3.5 (10.1) 2 (7.2) 3.4 (11.5) 

EWAS.bh 62.9 (13.6) 45.6 (13.6) 26.1 (9.5) 8.5 (5.2) 8.7 (13.6) 10.6 (16.1) 9.9 (13.6) 11.2 (15.5) 

EWAS.by 61.3 (15.2) 41.4 (14.5) 17.2 (9) 3.2 (3.3) 1.6 (7) 3.4 (10.3) 2.3 (8.4) 3 (11.2) 
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Figure 3. Performance to identify the true exposures at the true time point(s) – Scenario 1 
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Scenario 2 (a single time point is associated with Y) 

 

Table 3. Performance to identify the true exposures whatever the true time point – Scenario 

2 

 
Sensitivity    FDR    

N true predictors 3 5 10 25 3 5 10 25 

Raw data         

ExWAS.none 99.3 (4.7) 96.2 (8.4) 78 (13.1) 52.8 (11.3) 86.3 (3.4) 79.4 (4.8) 71.1 (6) 56.6 (7.2) 

Exwas.bon 75.3 (25.3) 38.4 (23.9) 14.5 (11.8) 3.9 (4.5) 6.3 (15.9) 3.2 (10.6) 5.2 (17.4) 7.6 (23.3) 

ExWAS.bh 84.7 (24.3) 51.6 (28.6) 22.4 (17.6) 6.1 (6.5) 13.9 (20.4) 8.2 (13.8) 13.9 (21.9) 12.6 (24.5) 

ExWAS.by 66.7 (30.3) 30.8 (25) 9.4 (12.5) 1.9 (3.6) 5.7 (15.7) 3.2 (13.3) 2.5 (9.9) 4 (16) 

ExWAS.MLM.none 72 (27.1) 53 (22.6) 34.6 (14.1) 16.8 (7.9) 73.2 (13.3) 70.8 (13.5) 63.9 (15) 55.6 (16.9) 

Exwas.MLM.bon 71 (27.1) 35.2 (24.1) 13.7 (11.4) 3.4 (3.6) 4.2 (12.8) 3.2 (11.2) 4.2 (16.5) 6.9 (23.2) 

ExWAS.MLM.bh 75.7 (27.6) 44.8 (25.9) 19.3 (15.1) 4.8 (4.9) 10.6 (19.9) 7.7 (16.1) 11.6 (21.4) 11.6 (24.5) 

ExWAS.MLM.by 63 (30.7) 28 (23.4) 9.1 (11.7) 1.6 (2.7) 3.6 (12.3) 3.2 (13.7) 1.7 (8.4) 3.7 (16.2) 

ENET.min 98.7 (6.6) 88.8 (20.6) 70.4 (19.6) 40.7 (21.8) 70.9 (20.1) 65.3 (22.2) 60.3 (17.7) 47 (20.9) 

ENET.opt 32.7 (31.4) 17 (25.6) 4.3 (8.7) 1.9 (5.3) 0.6 (4.1) 1 (5.2) 2.7 (14.9) 7.2 (24.3) 

sPLS 86 (21.3) 56.4 (29.7) 31.5 (23.9) 8.2 (12.1) 12.9 (21.1) 13.9 (21.6) 19.3 (23.7) 16.7 (27.4) 

MMPC 99 (5.7) 86.2 (15.2) 58 (13.6) 28.4 (7.6) 70.2 (7) 59.8 (9.8) 53 (11.4) 45.7 (12.9) 

DSA 82.3 (24.4) 46 (31.2) 14.9 (14.7) 3.5 (5) 9.7 (18.1) 7.9 (18.6) 9.8 (19.8) 12.2 (27.9) 

Averaged data         

ExWAS.none 90.7 (15.8) 73 (20.8) 45.1 (17.7) 21.8 (8.3) 59.7 (14.9) 51.7 (15) 47.9 (17.4) 40 (18.5) 

Exwas.bon 86.3 (19.6) 55.4 (25.4) 24.1 (13.4) 7.6 (5) 16.6 (20.4) 9.9 (19.4) 18.1 (26.3) 18.5 (28.7) 

ExWAS.bh 90.7 (15.8) 69.2 (24) 39 (17) 16.5 (9.1) 50.1 (18.9) 39.5 (19.8) 36.3 (21.7) 31.3 (22.7) 

ExWAS.by 86.3 (21.2) 56.4 (27.5) 23.4 (15.8) 6.8 (6.1) 22.2 (21) 12.9 (18.8) 16.7 (23.8) 16.5 (27.4) 

ExWAS.MLM.none 71.7 (23.4) 46.4 (23.2) 23.9 (13.9) 9.5 (5.1) 40.3 (22.2) 38.7 (27.9) 39.5 (28.2) 35.3 (25.2) 

Exwas.MLM.bon 75.3 (25.3) 47.8 (23.9) 21.8 (12.8) 6.7 (4.5) 14.9 (20.3) 10.1 (21.3) 19 (28.6) 17.5 (27.8) 

ExWAS.MLM.bh 74.3 (24.6) 48.6 (24.3) 26.7 (13.1) 11 (6.8) 44.3 (21.8) 36.9 (26.7) 36.5 (26.3) 30.6 (25.2) 

ExWAS.MLM.by 74 (26.2) 46.4 (24.4) 20.6 (14.1) 5.9 (5.3) 20.7 (23.1) 14.2 (21.6) 17.1 (26) 16 (27.5) 

ENET.min 90.7 (15.8) 73.2 (20.5) 45.2 (17.8) 22.2 (8.3) 60.9 (15.2) 53.1 (14.9) 49.8 (16.7) 41.1 (18.4) 

ENET.opt 59.7 (38) 36 (36.5) 16.1 (22.2) 6.1 (9.2) 9 (20.1) 8.8 (18.4) 12.9 (23.9) 14 (25.9) 

sPLS 90.7 (15.8) 72.2 (20.7) 44.6 (18.1) 21.9 (8.5) 49.2 (24.3) 47.4 (21.3) 47.6 (18.4) 40.6 (19.2) 

MMPC 90.7 (15.8) 71.8 (20.3) 42.9 (16) 19.2 (7.6) 53.2 (16.1) 45.5 (16.8) 42.9 (18.2) 37.8 (19.7) 

DSA 89.3 (17.6) 68.2 (24.8) 40.7 (19.2) 17.6 (10.1) 35.2 (28.6) 38.5 (24.7) 38.9 (23.5) 34.8 (23.9) 

Trajectories 2-step         

ExWAS.none 63.3 (28.2) 41 (22.8) 20 (13.7) 9.3 (6.4) 53.6 (23.8) 49.5 (26.9) 51.1 (28.7) 47.5 (27.4) 

Exwas.bon 62.7 (28.5) 36.4 (24) 13 (11.2) 3.8 (4.1) 13.2 (25) 7.1 (19) 15.7 (28.2) 17.3 (32.5) 

ExWAS.bh 63.3 (28.2) 39 (23.5) 16.1 (13.8) 5.9 (5.9) 34.1 (27.3) 20.7 (23.8) 26 (30.3) 23 (31) 

ExWAS.by 62 (29.6) 34.2 (25.2) 12.3 (12.5) 3.1 (4.1) 13.4 (21.4) 8.2 (17.6) 11.8 (22.3) 12.5 (27.5) 

ExWAS.MLM.none 54 (29.5) 29.2 (21.7) 11.3 (10.8) 4.8 (4) 34.5 (32.1) 39 (33.8) 45.2 (37.6) 45.3 (35.5) 

Exwas.MLM.bon 53.3 (28.8) 30.8 (21.7) 11.3 (11.1) 3.2 (3.5) 11.9 (24.7) 7.6 (21) 15.3 (28.7) 14 (29.8) 

ExWAS.MLM.bh 53.7 (28.4) 28.2 (21.1) 10.7 (10.8) 3.8 (4.4) 26.2 (29.5) 20 (28.1) 27.8 (34.8) 21.7 (33.2) 

ExWAS.MLM.by 52.3 (29.7) 27.6 (21) 10.3 (11.1) 2.6 (3.5) 14.3 (23.9) 9.5 (20.8) 11.7 (24.1) 10.7 (26.6) 

ENET.min 63.7 (28.1) 41 (22.8) 20.8 (13.8) 10.3 (6.8) 63.1 (20.4) 60.2 (22.8) 60 (24.6) 53.5 (25.5) 

ENET.opt 35.7 (33.3) 16 (25.1) 4.7 (9) 1.5 (4) 4.8 (19.1) 4.6 (18.7) 8 (26.1) 10.6 (30.3) 

sPLS 63 (28) 39.6 (22.7) 18.4 (13.8) 9.1 (6.5) 32.8 (32.5) 33.5 (33.3) 43.4 (33.7) 42.9 (28.9) 

MMPC 63.3 (28.2) 40.8 (22.9) 19.5 (13.3) 8.5 (5.4) 47.7 (25) 42.8 (29) 48.1 (29.3) 44.7 (29.3) 

DSA 63 (28) 36.4 (24.7) 16.7 (13.7) 6.7 (5.8) 23.9 (28.5) 20.4 (26.3) 32 (32.7) 35.8 (32.6) 
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DLNM         

EWAS.none 96 (10.9) 74.6 (20.5) 48.3 (17.1) 25.6 (10) 64.8 (13.8) 61.6 (13.4) 57.9 (15.1) 49.6 (14.3) 

EWAS.bonf 51.7 (26.6) 23.6 (19.8) 7.4 (8.5) 2 (3.2) 6.7 (17.8) 6.8 (21) 9.3 (21.9) 11.2 (29) 

EWAS.bh 64.7 (30.6) 32 (26.5) 12.7 (14.1) 4.3 (6.5) 12.8 (22.3) 10.8 (23.1) 13.4 (24.7) 14.2 (26.5) 

EWAS.by 41.7 (30.1) 17.6 (20.4) 4.6 (7.8) 1 (2.7) 4.8 (15.6) 1.8 (8.2) 3.4 (13.2) 3.4 (16.2) 

Penalized DLNM         

EWAS.none 98.3 (7.3) 83 (17.1) 56.4 (16.5) 33 (10.6) 72.5 (12.2) 66.5 (11.7) 61 (11.9) 52 (10.9) 

EWAS.bonf 86.3 (21.2) 52.2 (24.8) 26.7 (14.6) 10.8 (7.2) 26.7 (25.7) 27.9 (27.2) 30.8 (26.9) 39.7 (30) 

EWAS.bh 75 (28.6) 38.6 (27.3) 18.4 (17.2) 6.9 (8.8) 19.6 (25.2) 17 (26.7) 22 (26.5) 23.1 (31.8) 

EWAS.by 56 (31.4) 22.2 (23.8) 7.4 (11.2) 2.2 (4.8) 7.6 (19.4) 5.3 (16.6) 7.6 (21.5) 6.4 (17) 
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Figure 4. Performance to identify the true exposures whatever the true time point – Scenario 2 
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Table 4. Performance to identify the true exposures at the true time point – Scenario 2 

 
Sensitivity    FDR    

N true predictors 3 5 10 25 3 5 10 25 

Raw data         

ExWAS.none 99.3 (4.7) 93.6 (10.6) 72.1 (13.7) 44.4 (11.3) 91.5 (2) 87.5 (2.9) 82.2 (4.3) 75.6 (5.3) 

Exwas.bon 74.7 (25.6) 37.2 (23.6) 14.2 (11.6) 3.7 (4.4) 29.2 (27.6) 18.1 (23.6) 12.7 (26) 13.2 (29.7) 

ExWAS.bh 84.3 (24.4) 50.2 (28.1) 21.6 (17.1) 5.8 (6.5) 42.7 (27.4) 28.9 (25.7) 22.3 (27.2) 21.1 (30.5) 

ExWAS.by 66.3 (30.2) 30 (23.9) 9.3 (12.2) 1.8 (3.4) 24.9 (28.3) 14 (22.8) 5.3 (15.2) 5.2 (19) 

ExWAS.MLM.none 69 (27.7) 48.6 (23) 29.6 (13.9) 11.4 (6.3) 74.8 (13.7) 73.6 (13.4) 69.4 (14.9) 70.2 (15.9) 

Exwas.MLM.bon 70 (27) 33.4 (22.9) 13.4 (11.4) 3.2 (3.6) 6.5 (15.1) 7.5 (17.5) 6.6 (21.6) 11.9 (29.9) 

ExWAS.MLM.bh 75.3 (27.5) 42.4 (25) 18.5 (14.5) 4.5 (4.9) 12.5 (20.4) 11.9 (19.7) 14.1 (22.9) 17.3 (31.2) 

ExWAS.MLM.by 62.3 (30.2) 26.8 (21.7) 9 (11.4) 1.5 (2.7) 5.5 (14.1) 5.6 (15.8) 1.9 (8.6) 4.7 (18.8) 

ENET.min 97.7 (8.5) 83 (21.3) 61.8 (18.7) 30.7 (16.4) 74.8 (18.5) 71.2 (20.9) 69.1 (15.5) 61.7 (23.3) 

ENET.opt 31.7 (31.6) 16.2 (24.6) 4.3 (8.7) 1.5 (3.8) 4.1 (16.3) 3.4 (13.2) 2.8 (15.2) 11.8 (30.9) 

sPLS 84 (21.4) 52.8 (28.4) 29.5 (22.9) 7.4 (10.8) 17.9 (24.7) 24 (27.4) 26.5 (28.4) 24.2 (32.3) 

MMPC 92.3 (14.9) 72.6 (20.2) 46.7 (14) 19.2 (6.4) 72.3 (7.8) 66.3 (11.2) 62.3 (11.6) 63.5 (11.2) 

DSA 79.3 (25.4) 42.4 (28.9) 13.3 (12.4) 3.1 (4.4) 13 (20.8) 12.5 (23) 13.9 (23.2) 15 (30.9) 

Averaged data         

ExWAS.none 90.7 (15.7) 71.6 (20.9) 42.8 (17) 19.8 (7.6) 84.7 (5.6) 81.4 (7.4) 78.2 (11) 76.8 (7.5) 

Exwas.bon 86.3 (19.5) 53 (25.1) 22.3 (12.9) 6.5 (5.1) 52.7 (19.9) 37.6 (26.5) 36 (29.8) 39.9 (34.3) 

ExWAS.bh 90.7 (15.7) 67.2 (24) 36.3 (16) 14 (8.3) 75.2 (14.6) 67.8 (22.4) 60.2 (22.9) 59.9 (22.1) 

ExWAS.by 86.3 (21.2) 54.6 (27.3) 22.1 (15.2) 6 (5.7) 55.9 (22.9) 39.9 (27.8) 30.9 (30.3) 29.9 (33.2) 

ExWAS.MLM.none 71 (23.9) 43.6 (22.6) 21.3 (12.9) 7.1 (4.9) 42.5 (22.6) 44.2 (27.4) 46.5 (28.4) 53 (27.7) 

Exwas.MLM.bon 75 (25.2) 44.6 (23.2) 20 (12.4) 5.4 (4.4) 17.1 (20.3) 16.2 (23.8) 25.1 (31.2) 33.1 (36.7) 

ExWAS.MLM.bh 73.3 (24.1) 45.8 (23.1) 23.4 (12.1) 8.4 (5.6) 45.8 (22.1) 42 (26.9) 43.7 (27.3) 45.8 (26.5) 

ExWAS.MLM.by 73.7 (26) 43.4 (22.7) 18.9 (13.1) 5 (4.8) 22.6 (22.9) 19.9 (22.9) 22.2 (28.8) 25 (33.6) 

ENET.min 90 (16) 70 (20.7) 42.1 (17) 19 (8.1) 82.9 (8.2) 79.9 (8.8) 79.4 (8.7) 78.4 (8.1) 

ENET.opt 58 (38) 34.2 (35.1) 14 (18.9) 5 (7.4) 15.6 (26.4) 15.2 (24.3) 18.4 (29.1) 19.2 (31.1) 

sPLS 90.3 (15.9) 69 (20.7) 42.4 (17) 20.4 (8.9) 65.4 (31.5) 73 (24.9) 77.4 (19.2) 81.3 (12) 

MMPC 84.3 (18.6) 59.6 (21.4) 33 (14.2) 12 (5.9) 56.9 (15.7) 55.8 (15.7) 56.2 (16.9) 61.4 (16.3) 

DSA 85.7 (19) 56.2 (22.6) 30.2 (15.7) 11.3 (6.9) 41.5 (30.9) 52.5 (28.2) 57.8 (26.8) 60.1 (27.4) 

Trajectories         

EWAS.none 63.3 (28.2) 40.4 (23.1) 18.9 (13.6) 8.3 (6.1) 84.4 (7.1) 80.9 (13.1) 79.6 (16.7) 78.3 (16) 

EWAS.bon 62.7 (28.5) 35 (24) 11.5 (10.4) 3.1 (3.8) 55.2 (26.3) 38.5 (30.7) 36 (34) 36.5 (39.2) 

EWAS.bh 63.3 (28.2) 38.6 (23.3) 15.1 (13.2) 5.1 (5.4) 71.6 (22.3) 57.8 (29.4) 50.7 (35) 47.5 (37.9) 

EWAS.by 62 (29.6) 33.4 (25.4) 11.4 (11.8) 2.8 (3.8) 51.4 (30.9) 37.8 (33) 28.7 (32.6) 24.9 (34.8) 

EWAS_LM.none 52.7 (28.9) 26.4 (20.7) 9.9 (10.1) 3.4 (3.4) 39.3 (32.3) 46.8 (34.4) 51.1 (37.4) 61.3 (36.1) 

EWAS_LM.bon 53 (28.5) 29.2 (21.5) 9.7 (10.1) 2.5 (3.1) 14.2 (25.5) 13.2 (25.4) 22.8 (32.5) 26 (39.2) 

EWAS_LM.bh 52.7 (28.1) 26.4 (19.9) 9.6 (10) 3 (3.7) 29.4 (30.5) 26.7 (30.5) 32.9 (36.5) 31.5 (39) 

EWAS_LM.by 52 (29.3) 26 (20.4) 9.1 (10.2) 2.2 (3) 16.4 (24.9) 16 (26.1) 16.6 (28.6) 16.8 (32.8) 

ENET.min 63 (28) 39.4 (23.2) 18.6 (13.7) 8.6 (5.9) 80.3 (15.5) 78.2 (18.7) 79.1 (20.1) 79.2 (19.2) 

ENET.opt 34.3 (32.6) 15 (24.7) 4.1 (8.3) 1.2 (2.7) 8.9 (24.3) 11 (27.7) 11.9 (31.3) 15.6 (35.5) 

sPLS 62 (27.6) 37 (22.3) 16.9 (13.3) 7.8 (6.8) 43.7 (36.1) 50.9 (36.7) 59.9 (37.2) 70.2 (30.4) 

MMPC 59 (27.6) 34 (24.5) 15 (11.5) 5.2 (4.4) 52.8 (23.8) 55 (31.4) 60.3 (29.6) 67.5 (27) 

DSA 59.7 (28.6) 30.2 (22.3) 13.2 (11.4) 4.5 (4.4) 30.8 (32.3) 35.9 (35) 44.2 (38.1) 55.6 (37.3) 

DLNM         

EWAS.none 81.3 (22.9) 58.2 (23.6) 36.9 (15.6) 18 (9.6) 81.5 (10.5) 81.4 (9.5) 80.3 (8.6) 78.7 (9.5) 

EWAS.bonf 45.7 (27.1) 21.6 (19.6) 6.7 (8.3) 1.8 (3.2) 46.3 (26.1) 41.7 (30.6) 32.1 (33.8) 31.4 (38.1) 
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EWAS.bh 57.3 (32.5) 28.2 (25) 11.4 (13.5) 3.9 (6.1) 50.1 (26.4) 45.3 (31.3) 38.6 (34.9) 33.1 (37.9) 

EWAS.by 38.3 (29.4) 17 (20) 4.5 (7.8) 1 (2.7) 40.1 (28.2) 28.9 (29.8) 18.5 (29.6) 13.8 (29.8) 

Penalized DLNM 

EWAS.none 85.3 (21.3) 67.2 (21) 43.6 (15.6) 23.9 (10.4) 84.8 (11) 83.8 (6.4) 80.8 (8.6) 79.5 (7.3) 

EWAS.bonf 58.7 (30.8) 26.8 (22.1) 10.7 (10.9) 3.3 (4.4) 36.6 (30.1) 37.3 (34.4) 30.5 (34.2) 34.1 (38.2) 

EWAS.bh 67.3 (30.3) 35.8 (25.8) 16.9 (16.2) 6.6 (8.7) 47.8 (29.9) 41.7 (33.2) 41.1 (35.3) 42.5 (38.5) 

EWAS.by 51.7 (31.2) 21.2 (23.2) 7 (10.8) 2.2 (4.7) 33 (30.5) 24.9 (30.5) 19.1 (31.5) 14.2 (27.6) 
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Figure 5. Performance to identify the true exposures at the true time point – Scenario 2 
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